Saturday, December 31, 2011

Intronless genes in teleost fish genomes

A recent study made by German scientists revealed that Takifugu rubripes, Tetraodon nigroviridis, Oryzias latipes, Gasterosteus aculeatus and Danio rerio genomes are respectively comprised of 2.83%, 3.42%, 4.49%, 4.35% and 4.02% single exon genes (SEGs). These SEGs encode for a variety of family proteins including claudins, olfactory receptors and histones that are essential for various biological functions. Annotation features of three Dicentrarchus labrax chromosomes revealed 78 (5.30%) intronless genes, comparisons with G. aculeatus showed that SEG composition and their order varied significantly among corresponding chromosomes, even for those with nearly complete synteny. More than half of SEGs identified in most of the species have at least one ortholog multiple exon gene in the same genome, which provides insight to their possible origin by retrotransposition. In spite of the fact that they belong to the same lineage, the fraction of predicted SEGs varied significantly between the genomes analyzed, and only a low fraction of proteins (4.1%) is conserved between all five species. Furthermore, the inter-specific distribution of SEGs as well as the functional categories shared by species did not reflect their phylogenetic relationships. These results indicate that new SEGs are continuously and independently generated after species divergence over evolutionary time as evidenced by the phylogenetic results of single exon claudins genes. Results of this study provide strong support for the idea that retrotransposition followed by tandem duplications is the most probable event that can explain the expansion of SEGs in eukaryotic organisms.

Study was published in Marine Genomics. 2011 4(2):109-19.